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1 Introduction

Boundary conformal field theories have led to a wide range of applications in theoretical

physics. From the study of fixed point in quantum impurity problems to the description

of branes in open string theory, conformally invariant boundary conditions are the key

point of many fascinating problems. Unfortunately several aspects still need a better

comprehension, such as the classification of boundary conditions or the fusion of boundary

operators in non-rational conformal field theories (CFT).

In this article we concentrate on the O(n) model which provides a microscopic descrip-

tion of (non-rational) conformal field theories with central charge c < 1. The O(n) model

can also be investigated on a fluctuating lattice and the introduction of the matrix model

proved to be a powerful tool for the analysis of both bulk [1–6] and boundary [7–9] behav-

ior. In the continuum limit, the CFT is coupled to Liouville gravity and can be interpreted

as a string theory with target space dimension smaller than two [1].

The O(n) model is considered on a triangular lattice Γ, to each face is associated a

classical O(n) spin Sa(r), a = 1 · · ·n. The partition function describes nearest neighbor

interactions, the coupling constant being given by the inverse temperature T−1 [10, 11],

ZΓ(T ) = tr
∏

<rr′>

(

1 − 1

T

∑

a

Sa(r)Sa(r
′)

)

. (1.1)

Paths of identical spins draw self and mutually avoiding loops of weight n on the lattice.

The partition function can be re-expressed as a sum over loop patterns [1],

ZΓ(T ) =
∑

loops

T−(length)n#(loops), (1.2)

where the temperature is coupled to the total length of the loops. This formulation allows

analytic continuation of the parameter n to arbitrary real value. For fixed values of −2 ≤
n ≤ 2 the model develops two phase transitions with respect to the temperature [1, 12].

We will only be interested in the dense phase, and consider the model at zero temperature

where loops are fully packed. When put on a dynamical lattice, this point renormalizes to

a CFT [13] with central charge

cdense = 1 − 6θ2

1 − θ
, n = 2cos πθ, θ ∈ [0, 1] (1.3)

For the critical values n = 2cos
π

h
, h ∈ Z this CFT is essentially the rational (h, h − 1)

minimal model.

Following the work of [15, 16], a continuous set of boundary conditions was discov-

ered by Jacobsen and Saleur [14, 17]. Such boundary conditions, referred as JS boundary

conditions, are introduced as follows. On the boundary a certain subset of the spin com-

ponents is allowed to fluctuate. Fixing n − k components, the O(n) symmetry is broken

into O(k) × O(n − k) but the conformal invariance is still present at the critical point.

When reformulated in the loop gas language, this boundary condition gives a weight k to
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loops that touch the boundary. The parameter k can be analytically continued to arbitrary

real values and interpolates between Dirichlet (k = 1) and Neumann (k = n) boundary

conditions. This continuous set of boundary conditions is conveniently parameterized by

k(r) =
sin π(r + 1)θ

sin πrθ
, r ∈

[

0,
1

θ

]

. (1.4)

Additionally L open lines starting or ending between two boundaries are introduced.

These “L-leg” boundary operators can be seen as the fusion of the boundary changing

operator with the star operator of [8]. Two different sectors must be discussed, named

blobbed and unblobbed, this term referring to the underlying Temperley-Lieb algebra. In

the blobbed sector, the open line next to the JS boundary is allowed to touch it, whereas

this is forbidden in the unblobbed sector. Reformulated in the spin language, the spin path

described by a blobbed (resp. unblobbed) open line has components corresponding to the

fluctuating (resp. fixed) boundary spin.

In [14], the O(n) model was considered on an annulus with Neumann and JS boundary

conditions on respectively the inner and outer rims. Furthermore, L non-contractible

blobbed/unblobbed loops surrounding the inner rim were also introduced. The partition

function was computed, leading to a conjecture for the scaling dimension of boundary

changing operators. This conjecture was further checked on the random lattice in [18]

where a disc with Neumann and JS boundaries was studied. This disc partition function

can be generated as a matrix model correlator and the previous results were re-derived in

this context in [19].

Boundary changing operators between two JS boundaries with different parameter k

were discussed in [20] and the corresponding annulus partition function computed. The

purpose of the present article is to carry out a similar investigation on the fluctuating lattice

in order to compare the spectrum of JS-JS boundary operators with the results derived on

the flat lattice. In a first section we will recall the boundary O(n) matrix model and some

useful results from Liouville theory. Then, both sectors with and without open lines will

be considered in respectively section 2 and 3. Scaling exponents will be recovered in the

continuum limit and contact with the boundary Liouville 3-points function will be made.

Technical points that can be omitted at the first reading are gathered in the appendix.

Summary of the results. We consider the O(n) model on a random lattice with the disc

topology, and impose to the boundary spins one Neumann and two JS boundary conditions

of parameter kI and kJ . The insertion of open lines between the boundaries modify the

spectrum of the JS-JS boundary operator, and we need to differentiate two sectors. In

both sectors disc partition functions can be obtained as matrix model correlators. Using

the standard matrix model technique, we derived a set of loop equations and analyzed their

continuum limit. In this way, we found the gravitational scaling of the correlators and,

via the KPZ relation, recovered the critical dimension of the JS-JS boundary operators.

As a consistency check the critical loop equations were mapped on boundary ground ring

relations obeyed by Liouville correlators.

In the closed loop sector, no open lines are introduced between the two JS boundaries

and loops touching both boundaries can form. Thus, the scaling dimension of the JS-JS

– 3 –
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boundary operators also depends on the weight kIJ assigned to those loops. Parameterizing

the weight of the loops as (1.4) and [20]

kIJ(rIJ) =
sin (rI + rJ + 1 − rIJ)πθ/2 sin (rI + rJ + 1 + rIJ)πθ/2

sin rIπθ sin rJπθ
, (1.5)

with rIJ ∈ [1, 1 + 2/θ], the scaling dimension of the JS-JS boundary operators belongs to

δrIJ+2j,rIJ
, j ∈ Z, (1.6)

where we used the Kac notation (2.18).

When L open lines are inserted, loops touching both boundaries are forbidden and the

scaling dimension of the JS-JS boundary operators depends only on kI , kJ and L,

δǫIrI+ǫJrJ+1+2j,ǫIrI+ǫJrJ+1−L, j ∈ Z
+, (1.7)

where the sign ǫI = ± (resp. ǫJ) is plus when the open lines are blobbed with respect to

the JS boundary of parameter kI (resp. kJ ).

2 Preliminaries

2.1 The O(n) matrix model with boundaries

The O(n) partition function on a fluctuating lattice is obtained by summing the regular

lattice partition functions over realizations of a random lattice. In the case of the disc

topology it writes,

Zdyn(κ, x, T ) =
∑

Γ: disc

1

L(Γ)
κ−A(Γ)x−L(Γ)ZΓ(T ), (2.1)

where two cosmological constants were introduced. The bulk cosmological constant κ

controls the area A(Γ) of lattices and the boundary cosmological constant x the length

L(Γ) of the boundary. Such a boundary cosmological constant must be introduced for each

different boundary. In the following, we will use the convention to denote respectively by

x and y the boundary cosmological constants of Neumann and JS boundaries type.

Disc partition functions on a random lattice are obtained as the planar limit of the O(n)

matrix model simple trace correlators [19]. At the zero temperature point, the partition

function of the O(n) matrix model [6] reduces to

Z =

∫

dX
n
∏

a=1

dYa exp

[

−βtr

(

1

2
X2 +

1

2

n
∑

a=1

Y 2
a −

n
∑

a=1

XY 2
a

)]

, (2.2)

X and Ya being N × N hermitian matrices. The planar limit is achieved by sending the

size of the matrices N and the parameter β to infinity, keeping the cosmological con-

stant κ finite,

β = Nκ2. (2.3)
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The disc partition function with Neumann boundary condition is given by the first

order in the large N limit of the correlator1

Φ(x) = − 1

β
〈tr log (x − X)〉 . (2.4)

Here the quantity of importance is actually its derivative, the resolvant

W (x) = − ∂

∂x
Φ(x) =

1

β

〈

tr
1

x − X

〉

(2.5)

where one point on the boundary has been marked. This quantity plays a special role in

the study of matrix models. In the planar limit, it is known to have a branch cut on the

support of the eigenvalue density [a, b] ⊂ R
−. This branch cut is a common property of

correlators involving Neumann boundaries.

To study the disc partition function with two JS boundaries, we need to introduce a

third boundary of Neumann kind because loop equations couple both JS and Neumann

boundaries. To each JS boundary we associate an integer subset I ⊂ [1, n] with kI elements

corresponding to the spin components allowed to fluctuate. The matrix operator that

creates the JSI boundary with cosmological constant yI will be denoted

HI =
1

yI −
∑

a∈I Y 2
a

. (2.6)

The matrix operators that introduce the open lines were defined in [19]. Here we need

to slightly generalize their definition because open lines introduced between JS boundaries

can be blobbed with respect to zero, one or both boundaries. Let E be an integer subset

of [1, n], we define the L-legs matrix operators as

Y
(E)
L =

∑

{a1,··· ,aL}⊂E

Ya1 · · ·YaL
, (2.7)

where the sum is taken over all sets of unequal indices ai 6= aj. If E ⊂ I then the operator

is said to be blobbed with respect to the JSI boundary. On the contrary, when E ∩ I = ∅,
the operator is unblobbed with respect to this boundary. These open lines must be counted

with a weight kE = Card E.

In [19] were introduced matrix correlators corresponding to disc with mixed Neumann-

JS boundaries and L open lines between them,

D
(L E)
I (x, yI) =

1

β

〈

tr
1

x − X
Y

(E)
L HIY

(E)†
L

〉

. (2.8)

They were denoted D
(L ‖)
I when E = I, i.e. blobbed open lines with weight kI , and D

(L ⊥)
I

when E = [1, n] \ I corresponding to unblobbed open lines with weight n − kI .

1It is also possible to obtain Neumann boundary conditions as JS boundary conditions with k = n.

On the random lattice these two Neumann partition functions are inverse of eachother because the two

boundaries have different dimension.
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We now extend the previous definitions to the three boundaries Neumann-JSI-JSJ

case, where I and J are two integer subset of [1, n] of cardinal respectively kI and kJ .

Their intersection describes loops touching both boundaries, such loops having a weight

kIJ = Card I ∩ J . The disc correlator without open lines is given by

D
(0⊥)
IJ (x, yI , yJ) =

1

β

〈

tr
1

x − X
HIHJ

〉

. (2.9)

Considering two integer subsets E1 and E2 of [1, n] let us introduce the disc correlator

with an insertion of L1 open lines between the boundaries Neumann-JSI and JSI-JSJ , and

L2 open lines between the boundaries Neumann-JSJ and JSI-JSJ ,

D
(L1 L2|E1 E2)
IJ (x, yI , yJ) =

1

β

〈

tr
1

x − X
Y

(E1)
L1

HIY
(E1)†
L1

Y
(E2)
L2

HJY
(E2)†
L2

〉

. (2.10)

If we consider any E1 and E2, there is a redundancy coming from open lines starting

between Neumann-JSI boundaries, bouncing at the frontier JSI-JSJ and ending between

Neumann and JSJ boundaries. To forbid such an open line bouncing at some point, we

need to impose E1 ∩ E2 = ∅. All these quantities satisfy the reflection property

DIJ(x, yI , yJ) = DJI(x, yJ , yI). (2.11)

It will be more convenient to use a shortcut notation when only one set of open lines

is involved,

D
(L E)

ĪJ
(x, yI , yJ) =

1

β

〈

tr
1

x − X
Y

(E)
L HIY

(E)†
L HJ

〉

,

D
(L E)

IJ̄
(x, yI , yJ) =

1

β

〈

tr
1

x − X
HIY

(E)
L HJY

(E)†
L

〉

,

D
(E)

ĪJ
(x, yI , yJ) =

1

β

〈

tr
1

x − X
Y

(E)
1 HIY

(E)†
1 HJ

〉

,

D
(E)

IJ̄
(x, yI , yJ) =

1

β

〈

tr
1

x − X
HIY

(E)
1 HJY

(E)†
1

〉

.

(2.12)

We can also insert L open lines between Neumann-JSI and Neumann-JSJ bound-

ary points,

D
(L‖)
IJ (x, yI , yJ) =

1

β

〈

tr
1

x − X
Y

(I∩J)
L HIHJY

(I∩J)†
L

〉

,

D
(L⊥)
IJ (x, yI , yJ) =

1

β

〈

tr
1

x − X
Y

(I∪J)
L HIHJY

(I∪J)†
L

〉

.

(2.13)

where I ∪ J designate the complementary set of I ∪ J in [1, n].

In the continuum limit all parameters kI , kJ , kIJ will be analytically continued to

any real value. For clarity reasons the dependence of correlators in the JS boundary

cosmological constants will be hidden whenever this dependence is not directly relevant.

– 6 –
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2.2 Continuum limit and boundary Liouville correlators

In this section we recall briefly the main ideas of the continuum limit for the matrix

model correlators, more details on this subject can be found in [8, 9, 19]. We also present

some useful results of boundary Liouville theory, we address the reader to the original

papers [21–23] for further interest.

The continuum limit is achieved by sending the cosmological constants to their critical

values where the average area and the average length of boundaries diverge. The renor-

malized coupling constants are defined by blowing up the region near the critical point,

ǫ2gµ = κ − κ∗, ǫξ = x − x∗, ǫgζ = y − y∗, (2.14)

where was introduced the elementary length ǫg of the lattice as a cut-off. Boundaries

with Neumann boundary conditions have a fractal dimension 1/g, g = 1 − θ so that their

boundary cosmological constant scales as ξ ∼ µ1/2g. Boundaries of JS kind have the usual

dimension one and the cosmological constant simply scales as ζ ∼ µ1/2. The critical value

for the boundary cosmological constant were determined in the previous studies [1, 19],

x∗ = 0 and y∗ = (k + 1)W (0).

Let us consider a disc correlator with one Neumann boundary and an arbitrary number

of JS boundaries D(x, yi). The continuum limit of this correlator is obtained by subtracting

the non-critical part,

ǫαd(ξ, ζi) = D(x, yi) − D∗(x, yi). (2.15)

This non-critical part D∗ represents special limits of the disc correlator where one or more

boundary disappear, it must vanish after a finite number of derivative with respect to the

boundary cosmological constants.2 The critical correlator d as function of ξ has a branch

cut on ]−∞,−M ] ⊂ R
−, where M is a function of the bulk cosmological constant and was

computed in [12].

Critical points of statistical models on a random lattice are described in the continuum

limit as a CFT coupled to 2D gravity. In Polyakov gauge the effective degree of freedom

for the gravity is a Liouville field φ. The Liouville theory is conformal and coupling to the

conformal matter part is achieved through the requirement of vanishing total central charge

ctot = cCFT + cLiouville + cghost. (2.16)

This coupling gives the value b =
√

g to the Liouville parameter. Operators are dressed

by ghost and Liouville fields and we have to sum over the position of insertion in order

to get diffeomorphism invariant quantities. We also require the vanishing of the total

scaling dimension

∆matter + ∆Liouville + ∆ghost = 0. (2.17)

This requirement induces an important relation between the bare scaling dimension of CFT

operators δ and the Liouville momentum of the dressing factors P . We will extensively

make use of the Kac notation for these two quantities,

δr,s =
(r/b − sb)2 − (1/b − b)2

4
, Pr,s =

r

2b
− sb

2
, (2.18)

2This interpretation of the non-critical term of matrix model correlators is further explicited in [24].
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but allow non integer indices (r, s). Correlators of 2D gravity factorize into matter, ghost

and Liouville parts. The study of the Liouville part is sufficient to determine the scaling

exponents of bare operators via the dressing momenta. The Liouville term is also the only

dependence on the boundary cosmological constants, through the boundary parameters

(τ, σ) specified as ([19])

ξ(τ) = M cosh τ, ζ(σ) =
Mg

2g

sin πθ

sin πrIθ
cosh gσ. (2.19)

Consequently, we can neglect the ghost and matter part, focusing on the boundary param-

eters dependence. Let us define the Liouville boundary operator of momentum P inserted

between two boundaries labeled by τ and σ, as

τB σ
P = e(Q/2−P )φ. (2.20)

with the Liouville charge Q = b + 1
b . Here our convention slightly differs from the one

used in [19]. Most of the time, the momentum P will be positive and this definition

corresponds to the usual dressing of boundary CFT operators in the matrix model [8]. It

may happen that some momenta reveal to be negative, then the operator is found to have

a wrong dressing with respect to 2D gravity. All Liouville boundary operators obey the

reflection relation
τB σ

P = 4P d(P | τ, σ) · τB σ
−P (2.21)

involving the Liouville boundary 2-points function,

d(P | σ, τ) = 〈τB σ
P B τ

P 〉 . (2.22)

We will not need the explicit expression in terms of double sine functions found in [21] (see

also [30]), but the shift relation

sinπ∂τ

C sinh b2τ
d(P | τ, σ) = d(P − b/2 | τ, σ), (2.23)

where C is some constant independent of the boundary parameters, and the reflec-

tion property3

d(−P | τ, σ) = d(P | τ, σ)−1 (2.24)

will be useful.

The gravitational scaling of the Liouville correlator γ is linked to the momenta of

boundary operators via the KPZ formula [25–27],

〈

σ1BP1
σ2 · · · σnBPn

σ1
〉

∝ µγ , (2.25)

with

2bγ =
(

1 − n

2

)

(

b +
1

b

)

+

n
∑

i=1

Pi. (2.26)

3An irrelevant factor of 8P 2 was intentionnaly omitted for a matter of simplicity.

– 8 –



J
H
E
P
0
9
(
2
0
0
9
)
0
2
0

The disc with mixed Neumann-JS boundaries was studied by matrix model technique

in [19]. Solving the loop equation in the continuum limit, the boundary Liouville 2-points

function was recovered. The Liouville momentum of the dressed operator changing from

Neumann to JS boundary condition of parameter kI(rI) and with L open lines inserted

was found to be

P
(L⊥,‖)
I = ±rI

(

1

2b
− b

2

)

+ L
b

2
(2.27)

where the plus sign stands for unblobbed open lines. Such a momentum assign a grav-

itational scaling γI = PI

2b to matrix correlators. All momenta excepted P (0‖) and P (1‖)

are positive. The operator carrying momentum P (0‖) will be of no use here because the

boundary operator with no open line inserted has always momentum P (0⊥). Furthermore,

if we restrict to kI > 0 (i.e. rI < (1 − θ)/θ), P (1‖) is positive. When P (1‖) is negative, a

wrong dressing of the bare operator has to be used.

Let us now focus on the three boundaries case and denote by dIJ the continuum limit

of the correlator

ǫαIJ dIJ(ξ, ζI , ζJ) = DIJ(x, yI , yJ) − D∗
IJ(x, yI , yJ) (2.28)

where αIJ relates to the gravitational scaling µγIJ by αIJ = 2b2γIJ . The expression of the

critical part dIJ is given by the Liouville boundary 3-points function4

d(PI , P, PJ | σI , σJ , τ) =
〈

τB σI

PI
B σJ

P B τ
PJ

〉

. (2.29)

The exact expression of this function was found by Ponsot and Teschner in [22]. Here we

will only need some properties such as the reflection and cyclic symmetries,

d(P1, P2, P3 | σ1, σ2, σ3) = d(P3, P2, P1 | σ2, σ1, σ3),

d(P1, P2, P3 | σ1, σ2, σ3) = d(P2, P3, P1 | σ2, σ3, σ1) = d(P3, P1, P2 | σ3, σ1, σ2).
(2.30)

This function is also known to obey an important shift relation involving both momenta

and boundary parameters [29]. This relation simplifies when the momenta obey a specific

identity, as explained in appendix A.1.

Specializing the KPZ formula to the 3-points case, we get a relation that allows us to

recover the scaling dimension of the operator inserted between the JS boundaries directly

from the gravitational scaling γIJ of the matrix model correlator. Indeed, the expression

for the momenta of the operators inserted between Neumann and JS boundaries is already

known to be given by (2.27). Then we directly extract

P = 2bγIJ +
1

2b
+

b

2
− PI − PJ . (2.31)

As an example, let us consider the simplest case of d
(0⊥)
IJ correlator. No open lines

are inserted between Neumann and JS boundaries so that the momenta of the bound-

ary operators are simply given by P
(0⊥)
I , P

(0⊥)
J of (2.27). Using (2.31) we deduce from

4up to a factor independent of the boundary parameters, corresponding the ghost and matter part of

the correlator.
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the gravitational dimension γ
(0⊥)
IJ the momentum of the operator changing JSI into JSJ

boundary condition

P
(0⊥)
IJ = 2bγ

(0⊥)
IJ − rI + rJ − 1

2b
+ (rI + rJ + 1)

b

2
. (2.32)

Anticipating over the next section, let us mention that this correlator d
(0⊥)
IJ is coupled to

d
(1‖)
IJ in loop equations. The correlator d

(1‖)
IJ corresponds to a disc with Neumann-JSI-JSJ

boundaries and one open line inserted, starting between Neumann and JS I boundaries

and ending between Neumann and JSJ boundaries. The open line is allowed to touch both

JS boundaries and is introduced by boundary operators of momenta P
(1‖)
I and P

(1‖)
J . The

momentum of the operator changing JSI to JSJ boundary condition remains the same

because no open line is inserted at this point. This translates into the relation

γ
(1‖)
IJ − γ

(0⊥)
IJ = γ

(1‖)
J − γ

(0⊥)
I = γ

(1‖)
I − γ

(0⊥)
J (2.33)

for the gravitational scalings of d
(0⊥)
IJ and d

(1‖)
IJ correlators.

In the next sections, the gravitational scalings will be read of the matrix model loop

equations in the continuum limit. By the use of the previous statements, we will be able

to determine the scaling dimensions of the JSI-JSJ boundary changing operator.

2.3 Derivation of the loop equations

Using the invariance of the matrix measure, in [19] was derived a powerful loop equation

that can be applied to various quantities G,

〈tr GYa〉 =
∑

ij

1

β

〈

∂

∂Yaij

∮

dx′

2iπ

(

1

x′ − X
G

1

−x′ − X

)

ij

〉

. (2.34)

The contour of integration circles the support of the eigenvalue density that corresponds

to the branch cut ] −∞,−M ] of the correlators. This loop equation can be interpreted as

follows. In the l.h.s. is inserted on the boundary a matrix Ya that describes the starting

point of an open line. Because of the gaussian measure for Ya matrices, this matrix couple

to another Ya inside G corresponding to the end point of the open line. This operation

corresponds to remove an open line from the disc correlator, or loop if the end point is

situated nearby the starting point. The action of the Ya derivative in the r.h.s. is to split

the matrix product in two traces. Using the factorization property in the planar limit

〈tr Atr B〉 ∼ 〈tr A〉 〈tr B〉 (2.35)

we obtain a convolution of correlators in the length space that translates into a “star

product” in the boundary cosmological constant space,

(A ∗ B) (x) =

∮

dx′

2iπ

A(x′) − A(x)

x − x′
B(−x′). (2.36)

This product corresponds to the splitting of the disc into two parts along the open line

removed in the l.h.s. . Applied to various disc quantities, the relation (2.34) provides us

with several loop equations that can be used to determine the gravitational dimension of

the matrix model correlator.
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Figure 1. A disc with no open lines inserted between the two JS boundaries.

3 Closed loops sector

In this section we will be intersted in finding the scaling dimension of the operator changing

boundary conditions JSI to JSJ but with no open lines inserted between the two boundaries

(see figure 1). Open lines can be introduced between Neumann and JS boundaries without

changing the dimension of this operator. Indeed, considering the quantities defined in (2.13)

we can obtain the following equations when L > 0 by removing one of the open lines,

D
(L+1‖)
IJ = (kIJ − L) W ∗ D

(L‖)
IJ ,

D
(L+1⊥)
IJ = (n − kI − kJ + kIJ − L) W ∗ D

(L⊥)
IJ .

(3.1)

We deduce a recursion relation for the gravitational scalings γ
(L+1)
IJ = γ

(L)
IJ + 1/2 in agree-

ment with (2.31) where the momenta of operators inserted between Neumann and JS

boundaries are given by (2.27), the operator inserted between the two JS boundaries re-

maining unchanged.

3.1 Coupled loop equations for D
(0⊥)
IJ

Let us apply the loop equation (2.34) to G =
1

x − X
HIHJYc and use

∑

c∈J

〈

tr
1

x − X
HIHJY 2

c

〉

= yJD
(0⊥)
IJ − D

(0⊥)
I . (3.2)

This provides us with a first equation where D
(0⊥)
IJ and D

(1‖)
IJ are coupled,

yJD
(0⊥)
IJ = D

(0⊥)
I + kJD

(0⊥)
IJ ∗ W + D

(0⊥)
IJ ∗ D

(1‖)
J + D

(0⊥)
I ∗ D

(1‖)
IJ . (3.3)

Each term of the r.h.s. has an interpretation as splitting the l.h.s. correlator in two parts.

The first term corresponds to the vanishing of JSJ boundary. The second one reprents

the removal of a close loop. The two last terms correspond to a loop touching JSI or JSJ

boundary (figure 2).
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Figure 2. Combinatoric diagrams describing the splitting of D
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Figure 3. Combinatoric diagrams describing the splitting of D
(1‖)
IJ .

In a similar way, starting with G =
1

x − X
YaHIHJ and summing over a ∈ I ∩ J we

derive a second loop equation,

D
(1‖)
IJ = kIJW ∗ D

(0⊥)
IJ + D

(1‖)
IJ ∗ D

(0⊥)
J + D

(1I∩J)
I ∗ D

(0⊥)
IJ . (3.4)

Again, a combinatorial interpretation can be given to each term of the r.h.s. as shown in

figure 3. We remove the part of the open line starting between Neumann-JSJ boundaries

and ending the first time it touches the boundary. This picture corresponds to three terms,

either the open line does not touch any JS boundaries, or it first touches JSJ or JSI .

Note that similar equations can be obtained reversing the roles played by I and J

boundaries. Using the reflection symmetry of 3-boundaries correlators (2.11) we can finally

write the following set of coupled loop equations,

yJD
(0⊥)
IJ = D

(0⊥)
IJ ∗

(

kJW + D
(1‖)
J

)

+ D
(0⊥)
I ∗ D

(1‖)
IJ + D

(0⊥)
I ,

D
(1‖)
IJ =

(

kIJW + D
(1I∩J)
J

)

∗ D
(0⊥)
IJ + D

(1‖)
IJ ∗ D

(0⊥)
I .

(3.5)

In order to subtract the non-critical part of 2-boundaries correlators we introduce the

quantities [19],

d
(0⊥)
I (x, yI) = D

(0⊥)
I (x, yI) − 1,

kId
(1‖)
I (x, yI) = D

(1‖)
I (x, yI) + kIW (x) − yI ,

kIJd
(1I∩J)
I (x, yI) = D

(1I∩J)
I (x, yI) + kIJW (x) − yI .

(3.6)

The non-critical part of d
(0⊥)
IJ and d

(1‖)
IJ cannot be determined explicitly in general but we

do not need their exact expression, let us just denote for simplicity

d
(0⊥)
IJ (x, yI , yJ) = D

(0⊥)
IJ (x, yI , yJ), d

(1‖)
IJ (x, yI , yJ) = D

(1‖)
IJ (x, yI , yJ) + 1 (3.7)
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and write (3.5) as

0 = d
(0⊥)
IJ ∗ kJd

(1‖)
J + d

(0⊥)
I ∗ d

(1‖)
IJ ,

0 = kIJd
(1I∩J)
J ∗ d

(0⊥)
IJ + d

(1‖)
IJ ∗ d

(0⊥)
I .

(3.8)

The quantity d
(1I∩J)
I that appeared in (3.4) is very similar to d

(1‖)
I , they both obeys

the equation

d
(1I∩J)
I ∗ d

(0⊥)
I + W (x) = 0. (3.9)

This equation implies that d
(1I∩J)
I and d

(1‖)
I have the same discontinuity along their branch

cut, and we can replace d
(1I∩J)
I by d

(1‖)
I in the previous equation since it appears on the

left side of a star product (see appendix A.2 for more details),5

d
(0⊥)
I ∗ d

(1‖)
IJ + kJd

(0⊥)
IJ ∗ d

(1‖)
J = 0,

d
(1‖)
IJ ∗ d

(0⊥)
I + kIJd

(1‖)
J ∗ d

(0⊥)
IJ = 0.

(3.10)

This set of two coupled equations is one of the main results of this paper. In the continuum

limit, it allows us to determine the gravitational scaling of d
(0⊥)
IJ hence the dimension of

the operator inserted between JSI and JSJ . By taking the sum of these two identities at

respectively x and −x, we can eliminate one of the star products using the property (B.3).

Unfortunately it is not possible to eliminate the second star product in the general case.

This can only be done in some specific cases detailed in appendix A.3. These special cases

reveal helpfull to remove undeterminations left in the general case.

3.2 Obtaining the gravitational dimension in the continuum limit

We take the continuum limit as in (2.14), (2.28). Furthermore, we eliminate all but one

scaling parameter by imposing critical bulk and JS boundaries, µ = 0 = ζI = ζJ . Then,

every correlator writes as a power of the remaining cosmological constant ξ, dIJ(ξ) =

dIJξαIJ where dIJ is an unimportant constant. In this limit, the critical part of the

star product between two correlators d0(ξ) and d1(ξ) becomes rather trivial and is given

by (B.16). Applied to the loop equations (3.10) it gives

d
(0⊥)
I d

(1‖)
IJ sin πα

(0⊥)
I + d

(0⊥)
IJ d

(1‖)
J kJ sinπα

(0⊥)
IJ = 0,

d
(0⊥)
I d

(1‖)
IJ sinπα

(1‖)
IJ + d

(0⊥)
IJ d

(1‖)
J kIJ sin πα

(1‖)
J = 0.

(3.11)

where d
(0⊥)
I , d

(1‖)
J , d

(0⊥)
IJ and d

(1‖)
IJ are some constants. We recover the relation (2.33) by

imposing both terms to have the same scaling in ξ. The ratio of the previous relations gives

d
(0⊥)
IJ d

(1‖)
J

d
(1‖)
IJ d

(0⊥)
I

= − sinπα
(0⊥)
I

kJ sin πα
(0⊥)
IJ

= − sin πα
(1‖)
IJ

kIJ sin πα
(1‖)
J

(3.12)

and finally

kIJ =
sin πα

(0⊥)
IJ sinπα

(1‖)
IJ

sin πα
(0⊥)
I sin πα

(0⊥)
J

. (3.13)

5Two more equations can be obtained simply by exchanging I and J .

– 13 –



J
H
E
P
0
9
(
2
0
0
9
)
0
2
0

It is now convenient to introduce the parameterization (1.5) of [20]. This parameteri-

zation kIJ(rIJ) is not well defined because of the periodicity rIJ → rIJ + 2/θ, that’s why

we impose rIJ ∈ [1, 1 + 2/θ]. Relations (3.13) and (2.33) translates into

α
(0⊥)
IJ = (1 + rI + rJ ± rIJ)

θ

2
+ j, j ∈ Z. (3.14)

A look at the results for kIJ = 0 and kIJ = kJ detailed in appendix A.3 leads to select the

plus sign and j = −1. This choice provides a dimension δrIJ ,rIJ
to the boundary operator

inserted between the two JS boundaries. This fits in the table of boundary operators

dimensions found in [20] on the regular lattice.

3.3 Loop equations and Liouville theory

The loop equations (3.10) are not sufficient to recover the exact solution for the Liouville

boundary 3-points function of [22]. It is nonetheless possible to transform them into the

shift relation (A.2). One should also keep in mind the presence of leg factors between ma-

trix model correlators in the continuum limit and boundary Liouville two and three points

function. Consequently it makes sense to compare matrix model loop equations and bound-

ary Liouville shift relations only up to an undetermined factor independent of the boundary

parameter τ . Besides its own interest, the mapping of the matrix model loop equations on

Liouville shift relations allows to cross-check the calculation of the gravitational scalings.

Let us start with the discontinuity of equations (3.10) over the support of eigenvalues,

d
(1‖)
IJ (−ξ)Disc d

(0⊥)
I + kJd

(1‖)
J (−ξ)Disc d

(0⊥)
IJ = 0,

d
(0⊥)
I (−ξ)Disc d

(1‖)
IJ + kIJd

(0⊥)
IJ (−ξ)Disc d

(1‖)
J = 0.

(3.15)

This description in terms of discontinuities is totally equivalent to the star product relations,

provided we know the behavior of correlators at infinity. In the parameterization (2.19)

these relations become shift equations involving the boundary parameter τ ∈ R of the

Neumann boundary,

sin π∂τ

C
(0⊥)
I sinh b2τ

d(P
(0⊥)
I , PIJ , P

(0⊥)
J | σI , σJ , τ)

= −d(P
(0⊥)
I − b/2 | τ, σI)

kJd(P
(1‖)
J | τ, σJ )

d(P
(1‖)
I , PIJ , P

(1‖)
J | σI , σJ , τ),

sinπ∂τ

C
(1‖)
J sinh b2τ

d(P
(1‖)
I , PIJ , P

(1‖)
J | σI , σJ , τ)

= −d(P
(1‖)
J − b/2, | τ, σJ)

kIJd(P
(0⊥)
I , | τ, σI)

d(P
(0⊥)
I , PIJ , P

(0⊥)
J | σI , σJ , τ).

(3.16)

Here C
(0⊥)
I and C

(1‖)
J are unimportant constants independent of τ . To derive this set of

equations, we exploited the shift property of boundary Liouville 2-points functions (2.23).
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If we insert the values of the momenta given by (2.27) we can write

sin π∂τ

C
(0⊥)
I sinh b2τ

d(P
(0⊥)
I , PIJ , P

(0⊥)
J | σI , σJ , τ)

= − d(P
(0⊥)
I − b/2 | τ, σI)

kJd(b/2 − P
(0⊥)
J | τ, σJ )

d(b/2 − P
(0⊥)
I , PIJ , b/2 − P

(0⊥)
J | σI , σJ , τ)

(3.17)

And an equivalent equation under the trivial change of variables P
(0⊥)
I,J → b/2 − P

(0⊥)
I,J .

Finally, the reflection property of boundary operators (2.21) bring us the conclusion that

the two previous equations coincide with the relation (A.2).

3.4 A few remarks

Let us conclude the study of the closed loops sector with a few remarks. First, based on an

observation made by Kostov in [18] for the disc with Neumann-JS boundaries, we extend

the relations (3.1) to the case L = 0. This defines a new quantity D
(0‖)
IJ satisfying

D
(1‖)
IJ = kIJW ∗ D

(0‖)
IJ . (3.18)

The compatibility of this definition with (3.5) results in the relation

D
(0‖)
IJ (x) =

D
(0⊥)
IJ (x)

d
(0⊥)
I (x)d

(0⊥)
J (x)

, (3.19)

handing only when the image −x belongs to the support of the eigenvalue density. But two

functions taking the same values on this symmetric support leads to the same results when

appearing on the right side of the star product, so that we have the freedom to choose D
(0‖)
IJ

such that the relation (3.19) extends to the whole complex plane. This relation becomes

significant when written as

D
(0‖)
IJ =

D
(0⊥)
IJ

(1 − D
(0⊥)
I )(1 − D

(0⊥)
J )

=
∞
∑

m,n=0

(

D
(0⊥)
I

)n (

D
(0⊥)
J

)m
D

(0⊥)
IJ . (3.20)

The sum over (m,n) counts the number of time JSI and JSJ can touch themselves, bound-

aries touching eachother being forbidden.

A second remark of importance can be made when we compare to the results derived

on the regular lattice [20]. Indeed, the spectrum of boundary operators that was found

is actually δrIJ+2j,rIJ
with j ∈ Z where the weight of loops touching both JS boundaries

kIJ (rIJ) is parameterized as in (1.5) but with no restriction on the range of rIJ . This kind

of parameterization is invariant under the periodicity transformation

rIJ → rIJ +
2

θ
, δrIJ+2j,rIJ

→ δrIJ+2(j+1),rIJ
. (3.21)

For concreteness we decided to restrict rIJ to the interval [1, 1 + 2/θ] and we recovered

the dimension δrIJ ,rIJ
(j = 0) for the JS-JS boundary operator. It is possible to ob-

tain more general boundary operators if we consider the Neumann-JSI-Neumann-JSJ ma-

trix correlator,

DNINJ(x, yI , x
′, yJ) =

1

β

〈

tr
1

x − X
HI

1

x′ − X
HJ

〉

. (3.22)
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This correlator obeys the same loop equation as D
(0⊥)
IJ and its critical part have the grav-

itational dimension, dNINJ ∼ µγ
(0⊥)
IJ

− 1
2b2 . This dimension can be easily read of the loop

equation when kIJ = 0, the generalization to arbitrary value of kIJ follow the same steps as

the three boundary case. When the boundary cosmological constant x′ diverges, the length

of the corresponding Neumann boundary tends toward zero, JSI-Neumann and Neumann-

JSJ boundary operators fuse to form JSI-JSJ boundary operators. This translates into

the expansion

DNINJ (x, yI , x
′, yJ) =

∞
∑

j=0

x
′−j−1 1

β

〈

tr
1

x − X
HIX

jHJ

〉

. (3.23)

In the continuum limit the Neumann boundary of length j introduced by the matrix product

Xj vanish but the presence of this remnant of the random lattice modifies the JS-JS

boundary operator. Hence, the matrix model correlator

D
(j)
NINJ(x, yI , yJ) =

1

β

〈

tr
1

x − X
HIX

jHJ

〉

(3.24)

describes in the continuum limit the Neumann-JSI-JSJ disc partition function with a

boundary operator of dimension δrIJ+2j,rIJ
inserted between the two JS boundaries.6 Oper-

ators of dimension δrIJ−2j,rIJ
where j is a positive integer can be constructed with negative

power for the X matrix. However they are not involved in the fusion of Neumann-JS

boundary operators. Furthermore, these peculiar operators are wrongly dressed by the

Liouville field.

4 Open lines sector

We discuss in this section correlators with open lines inserted between JSI and JSJ bound-

aries (figure 4). Amongst these open lines, L1 (resp. L2) will end at the transition

Neumann-JSI (resp. JSJ). Such correlators should be compared to the annulus with

L1 + L2 non-contractible lines surrounding the inner ring in [20]. On the annulus the

first and the last lines can be authorized (or forbidden) to touch the JS boundary, leading

to blobbed and unblobbed sectors. Similarly on the disc, the open line next to the JS

boundary will be able (or not) to touch this boundary.

When we remove through the loop equation an open line which is alone, different equa-

tions arise due to the possibility of this line to touch the JS boundaries or not. This results

in four cases of study corresponding to (L1, L2) ∈ {(0, 1), (0, L > 1), (L > 0, 1), (L1 >

1, L2 > 1)}.
The presence of open lines inserted between JSI and JSJ boundaries forbids loops

touching both boundaries so that the resulting disc partition function should be indepen-

dent of the weight kIJ . To be more precise, these lines divide the disc into two parts

6It is possible to prove by recursion that such correlators have a gravitational dimension γ
(j)
NINJ =

γ
(0⊥)
IJ + j

2b2
. This is easy to do when kIJ = 0, we generalize then to arbitrary kIJ arguing that loop

equations are the same than in the three boundary case.
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Figure 4. The disc correlator D
(2 2|E1 E2)
IJ .

containing respectively JSI and JSJ boundaries and our results should not rely upon the

intersection I∩J . The non-trivial dependence is only on the intersection of the sets describ-

ing indices involved in the open lines and the sets characterizing JS boundaries. This gives

rise to discussions on blobbed and unblobbed cases with respect to one or two boundaries.

4.1 (L > 0, 1) open lines sector

Let us start with the most rewarding case of L open lines on the JSI side and only one

on the other side. We associate to the JSI open lines the integer set E1 and E2 to the

JSJ open line, considering the correlator D
(L 1|E1 E2)
IJ . Removing the single JSJ open line,

we get

D
(L 1|E1 E2)
IJ = kE2D

(L E1)
I ∗ D

(0⊥)
J + D

(L 1|E1 E2∩J)
IJ ∗ D

(0⊥)
J . (4.1)

This equation requires two different treatments according to the blob of the open line

we remove.

4.1.1 Unblobbed sector with respect to JSJ boundary

The simplest case is the unblobbed sector E2 ∩ J = ∅ where the second term of the r.h.s.

in the loop equation (4.1) describing the open line touching the JSJ boundary vanishes.

Injecting the critical part of D
(0⊥)
I yields to

D
(L 1|E1 E2)
IJ = kE2D

(L E1)
I ∗ d

(0⊥)
J + kE2D

(L E1)
I (x). (4.2)

The second term D
(L E1)
I of the r.h.s. cancels with the non-critical part of D

(L 1|E1 E2)
IJ

as it describes the vanishing of the JSJ boundary. We can read directly the gravitational

scaling γ
(L 1|E1 E2)
IJ = γ

(L E1)
I +γ

(0⊥)
J . Plugging the values PI and PJ of the momenta for the

Neumann-JS boundary operators into the relation (2.31) we find out the scaling dimension

δrJ±rI+1,rJ±rI−L (4.3)

for the JSI-JSJ boundary operator with L + 1 open lines, the plus sign being affected to

the JSI unblobbed open lines case.
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4.1.2 Blobbed sector with respect to JSJ boundary

When the removed open line is allowed to touch the JSJ boundary the discussion is more

subtle. Indeed, E2 ⊂ J and the loop equation (4.1) reads,

D
(L 1|E1 E2)
IJ = kE2D

(L E1)
I ∗ D

(0⊥)
J + D

(L 1|E1 E2)
IJ ∗ D

(0⊥)
J . (4.4)

This equation looks quite similar to the one derived in [19] for D
(1‖)
I ,

D
(1‖)
I = kIW ∗ D

(0⊥)
I + D

(1‖)
I ∗ D

(0⊥)
I . (4.5)

This similarity is not very surprising in the sense that the JSI boundary is completely

decoupled from the JSJ boundary by the L open lines. This JSI boundary plays no role

in the loop equation and the removed open line sees only an effective Neumann boundary

condition corresponding to the rightmost JSI open line. Hence we mimic the solution of

the one JS boundary case and take a similar a non-critical part for D
(1‖)
I and D

(L 1|E1 E2)
IJ ,

d
(0⊥)
I (x) = D

(0⊥)
I (x) − 1,

kId
(1‖)
I (x) = D

(1‖)
I (x) + kIW (x) − yI ,

kE2d
(L 1|E1 E2)
IJ (x) = D

(L 1|E1 E2)
IJ (x) + kE2

(

D
(L E1)
I (x) − c

)

.

(4.6)

The exact value of the constant c (independent of x) is not important here and will be kept

undetermined, the crucial point is to substract the term corresponding to the vanishing of

the JSJ boundary. The critical loop equation reads

D
(L E1)
I + d

(L E2)
IJ ∗ d

(0⊥)
J = c. (4.7)

and the constant c must cancel with the non-critical part of D
(L E1)
I . The relation between

gravitational scalings is simply γ
(L 1|E1 E2)
IJ = γ

(L E1)
I − γ

(0⊥)
J , when plugged in (2.31) we

end up with the scaling dimension

δ−rJ±rI+1,−rJ±rI−L (4.8)

for the JSI-JSJ boundary operator, the plus sign corresponding to unblobbed open lines

with respect to the JSI boundary.

Following the steps of section 3.3 both equations (4.2) and (4.4) can be transformed into

the shift relation (A.6) for the Liouville 3-points function. This confirms our identification

of the non-critical part for matrix model correlators.

4.2 (0, L > 1) open lines sector

This case is very similar to the previous one but we briefly mention how it is solved for

completeness. The loop equation reads

D
(L E)

IJ̄
= (kE − L) D

(0⊥)
I ∗ D

(L−1 E)
J

+
∑

ai∈E

δa1∈ID
(0⊥)
I ∗

〈

tr
1

x − X
Ya1HIYa1 · · ·YaL

HJYaL
· · ·Ya2

〉

,
(4.9)
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the second term of the r.h.s. describes the removal of an open line touching the JSI bound-

ary. It disappears when we consider an unblobbed open line with respect to this boundary,

E ∩ I = ∅. We then deduce γ
(L E)

IJ̄
= γ

(0⊥)
I + γ

(L E)
J providing the scaling

δ1+rI±rJ ,1+rI±rJ−L (4.10)

for the JSI-JSJ boundary operator, the plus sign being assigned to unblobbed open lines

with respect to JSJ boundary.

When the removed open line is unblobbed with respect to the JSI boundary, E ⊂ I

and the first term of the r.h.s. of (4.9) cancel with the non critical part of the second term

as it describes the vanishing of the JSI boundary. This term is actually D
(1‖)
I ∗ D

(L−2 E)
J ,

so that we determine the gravitational scaling γ
(L E)

IJ̄
= γ

(0⊥)
I + γ

(1‖)
I + γ

(L−2 E)
J . It yields

to the scaling dimension

δ1−rI±rJ ,1−rI±rJ−L (4.11)

for the operator inserted between the JS boundaries, and again the sign plus corresponds

to unblobbed open lines with respect to the JSJ boundary.

4.3 (0, 1) open line sector

Here we have to distinguish three subcases, the open line being allowed to touch zero, one

or two boundaries. We denote by E ⊂ [1, n] the integer set containing the spin components

involved in the open line. The general loop equations can be derived from (2.34) and, with

the shortcut notations of (2.12), we can write the following set of loop equations,

D
(E)

IJ̄
= kED

(0⊥)
I ∗ D

(0⊥)
J + D

(0⊥)
I ∗ D

(E∩I)

ĪJ
+ D

(E∩J)

IJ̄
∗ D

(0⊥)
J ,

D
(E)

ĪJ
= kED

(0⊥)
J ∗ D

(0⊥)
I + D

(0⊥)
J ∗ D

(E∩J)

IJ̄
+ D

(E∩I)

ĪJ
∗ D

(0⊥)
I .

(4.12)

The second equation is obtained just by reversing the roles played by I and J . Summing

both equations at points x and −x and using (B.3) to get rid of the star products, we end

up with

D
(E)

IJ̄
(x) + D

(E)

ĪJ
(−x)

= kE D
(0⊥)
I (x)D

(0⊥)
J (−x) + D

(0⊥)
I (x)D

(E∩I)

ĪJ
(−x) + D

(E∩J)

IJ̄
(x)D

(0⊥)
J (−x).

(4.13)

Let us now specialize to the different subcases.

4.3.1 Unblobbed open line with respect to both boundaries (E∩ I = ∅ = E∩J)

When the open line does not touch any of the JS boundaries the star product equa-

tions (4.12) simplify into,

D
(E)

IJ̄
(x) = kE

(

d
(0⊥)
I ∗ d

(0⊥)
J

)

(x) + kED
(0⊥)
I (x),

D
(E)

ĪJ
(x) = kE

(

d
(0⊥)
J ∗ d

(0⊥)
I

)

(x) + kED
(0⊥)
J (x).

(4.14)
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These equations looks very similar to those of section 4.1.1 therefore we take the same kind

of non-critical part for the 3-boundaries correlators,

kEd
(E)

IJ̄
(x) = D

(E)

IJ̄
(x) − kE

(

D
(0⊥)
I (x) − cIJ̄

)

,

kEd
(E)

ĪJ
(x) = D

(E)

ĪJ
(x) − kE

(

D
(0⊥)
J (x) − cĪJ

)

.
(4.15)

The loop equation (4.13) implies cIJ̄ + cĪJ = 1, and by symmetry it is tempting to set

cIJ̄ = cĪJ = 1/2. We finally get

d
(E)

IJ̄
(x) + d

(E)

ĪJ
(−x) = d

(0⊥)
I (x)d

(0⊥)
J (−x) (4.16)

and the relation γ
(E)

ĪJ
= γ

(E)

IJ̄
= γ

(0⊥)
I + γ

(0⊥)
J amongst the gravitational scalings. The KPZ

relation (2.31) yield to a scaling

δ1+rI+rJ ,rI+rJ
(4.17)

for the operator inserted between the two JS boundaries.

4.3.2 Blobbed open line on JSJ , unblobbed on JSI (E ⊂ J, E ∩ I = ∅)
Again, it is more rewarding to consider the loop equation in the start product form (4.12),

D
(E)

IJ̄
(x) = kE

(

D
(0⊥)
I ∗ D

(0⊥)
J

)

(x) +
(

D
(E)

IJ̄
∗ D

(0⊥)
J

)

(x),

D
(E)

ĪJ
(x) = kE

(

D
(0⊥)
J ∗ D

(0⊥)
I

)

(x) +
(

D
(0⊥)
J ∗ D

(E)

IJ̄

)

(x).
(4.18)

The first equation is very similar to the loop equation obtained for D
(1‖)
I , so that we define

a similar non-critical part that corresponds to the vanishing of the JSJ boundary,

kEd
(E)

IJ̄
(x) = D

(E)

IJ̄
(x) + kE

(

D
(0⊥)
I (x) − cIJ̄

)

. (4.19)

This allows us to rewrite the loop equations as

0 =
(

d
(E)

IJ̄
∗ d

(0⊥)
J

)

(x) + D
(0⊥)
I (x),

D
(E)

ĪJ
(x) = kE

(

d
(0⊥)
J ∗ d

(E)

IJ̄

)

(x) + kEcIJ̄D
(0⊥)
J (x).

(4.20)

The term proportional to D
(0⊥)
J should cancel with the non-critical part of DĪJ , so we define

kEd
(E)

ĪJ
(x) = D

(E)

ĪJ
(x) − kE

(

cIJ̄D
(0⊥)
J (x) + cĪJ

)

. (4.21)

Such a critical part leads to the relation

d
(E)

ĪJ
(−x) = d

(E)

IJ̄
(x)d

(0⊥)
J (−x) + d

(0⊥)
I (x) − cIJ̄ − cĪJ + 1. (4.22)

We get cIJ̄ + cĪJ = 1, and by analogy with respect to the first section, it is tempting to

set cIJ̄ = cĪJ = 1/2. The gravitational scalings are related by γ
(E)

ĪJ
= γ

(0⊥)
I = γ

(E)

IJ̄
+ γ

(0⊥)
J

and both leads to a scaling dimension

δ1+rI−rJ ,rI−rJ
(4.23)

for the operator inserted between the JS boundaries.
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4.3.3 Blobbed open line on both JS boundaries (E ⊂ I ∩ J)

We start from the loop equation (4.13),

D
(E)

IJ̄
(x) + D

(E)

ĪJ
(−x) = kED

(0⊥)
I (x)D

(0⊥)
J (−x) + D

(0⊥)
I (x)D

(E)

ĪJ
(−x) + D

(E)

IJ̄
(x)D

(0⊥)
J (−x).

(4.24)

By analogy with the previous case, we define our critical quantities as

kEd
(E)

IJ̄
(x) = D

(E)

IJ̄
(x) + kE

(

1

2
D

(0⊥)
I (x) +

1

2

)

,

kEd
(E)

ĪJ
(x) = D

(E)

ĪJ
(x) + kE

(

1

2
D

(0⊥)
J (x) +

1

2

)

.

(4.25)

thus obtaining the critical loop equation

0 = 1 + d
(0⊥)
I (x)d

(E)

ĪJ
(−x) + d

(0⊥)
J (−x)d

(E)

IJ̄
(x) (4.26)

leading to gravitational scalings γĪJ = −γ
(0⊥)
I , γIJ̄ = −γ

(0⊥)
J , the scaling dimension of the

operator inserted between the two JS boundaries reads

δ1−rI−rJ ,−rI−rJ
. (4.27)

This case is the only one in the open line sector for which the momentum of the Liouville

dressing factor is negative. As explained in the first section, in such a case we have to use

a wrong dressing of the bare boundary operator.

To conclude the study of the (0, L > 1) sector, let us mention that the three critical loop

equations (4.16), (4.22), (4.26) lead to the relation (A.5) after a few algebraic manipulation.

This strong result ensures the correctness of our ansatz for the non-critical parts of the

3-boundaries matrix correlators.

4.4 (L1 > 1, L2 > 1) open lines sector

This case is rather trivial because the line we remove is provided to touch JS boundaries by

the other open lines. In this way we do not need to specialize to any blobbed/unblobbed

sector and the loop equation simply express the splitting of the disc into two parts,

D
(L1 L2|E1 E2)
IJ = kE2 D

(L1 E1)
I ∗ D

(L2−1 E2)
J . (4.28)

The gravitational scaling of the l.h.s. is just the sum of the scalings for both r.h.s. correla-

tors. The momenta of Neumann-JS boundary operators are given by

PI = ǫIrI

(

1

2b
− b

2

)

+ L1
b

2
, PJ = ǫJrJ

(

1

2b
− b

2

)

+ L2
b

2
(4.29)

where ǫ = ±1 is a sign corresponding to the blob of the open lines, ǫ = +1 in the unblobbed

case. We then derive the scaling dimension

δǫIrI+ǫJrJ+1,ǫIrI+ǫJrJ+1−(L1+L2) (4.30)
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for the JSI-JSJ boundary operator. From our results of the previous sections, we can

extend this formula to any values of L1 and L2. These results are in agreement with

the analysis made in [20] on the regular lattice, provided we identify the number of non

contractible loops of the annulus to the total number of open lines L1 + L2. Note that all

these results are, as expected, independent of the intersection I ∩ J . It is also satisfactory

that the scaling of the operator depends only on the total number of open lines L1 + L2,

being insensitive to where these open lines end.

As in the closed loops sector, it is possible to construct more general boundary opera-

tors with scaling dimension

δǫIrI+ǫJrJ+1+2j,ǫIrI+ǫJrJ+1−(L1+L2), j ∈ Z+. (4.31)

This is done in a similar way, introducing a product of j X matrices between the two

JS boundaries. We then obtain the same kind of loop equations, they correspond to the

shift relation (A.6) in the continuum limit, where the momentum of the JS-JS boundary

operator is

P = PI + PJ +
1

2b
(2j + 1) − b

2
, j ∈ Z+. (4.32)

5 Concluding remarks

The main results of the present article are formulas (1.6) and (1.7) for the scaling dimension

of JS-JS boundary operators in closed loops and open lines sectors. We provide an indepen-

dent check of the results obtained in [20] using numerics and Coulomb gas arguments. Our

method can be easily generalized to more complicated topologies with non-trivial cycles.

This matrix model approach carries many interesting features. For instance the fusion of

two Neumann-JS boundary operators can be done explicitly in sending the boundary cos-

mological constant toward infinity. In the closed loop sector, the fusion rules depends not

only on the JS parameters kI and kJ but also on the symmetry group that is preserved by

both boundaries, through the weight kIJ of loops touching both JS boundaries. At fixed

kIJ , the fusion rules contain an infinite number of terms,

δrI ,rI
× δrJ ,rJ

=
∞
⊕

j=0

δrIJ+2j,rIJ
(5.1)

where rIJ is related to rI and rJ via the parameterization (1.5). In the open line sector,

loops touching both boundaries are forbidden and the fusion rules only depends on kI

and kJ ,

δǫIrI ,ǫIrI−L1 × δǫJrJ ,ǫJrJ−L2 =
∞
⊕

j=0

δ1+ǫIrI+ǫJrJ+2j,1+ǫIrI+ǫJrJ−(L1+L2). (5.2)

As a consistency check, we were able to map the critical loop equations on the boundary

ground ring relations obtained in Liouville theory. It would be interesting to develop further

this mapping, and in particular to investigate the role of Liouville degenerate boundary
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operator in the matrix model. Furthermore, a connection between the KPZ relation and

Schramm-Loewner evolution (SLE) was found recently in [31, 32]. It seems natural to ask

for an interpretation of the loop equations in the mathematical framework of SLE.

Finally, for special values of n the continuum limit of the O(n) model is given by a min-

imal model. Then the conformal matter can be described using Coulomb gas techniques.

This description imposes severe restrictions on the Liouville momenta [28]. On the other

side, the O(n) model is known to be mapped on a Restricted Solid On Solid (RSOS) model,

JS boundary conditions being transpose to alternating height boundary conditions [14, 19].

It would be very intersting to compare the allowed weight a loop touching two different

boundaries with alternating height boundary conditions can take and the restrictions com-

ing from Coulomb gas predictions. Furthermore, one could rederive the fusion rules of

minimal models in this context.
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A Simplification of the shift relations for the boundary Liouville 3-points

function

Using the operator product expansion of boundary ground ring operator, a shift relation

for the boundary 3-points function can be derived (see [22, 29]):

Γ(1 + 2bPI − α)

Γ(2bPI)
d

(

PI +
b

2
, P, PJ | σI , σJ , τ ± iπ

)

− Γ(1 − 2bPJ)

Γ(α − 2bPJ )
d

(

PI , P, PJ +
b

2
| σI , σJ , τ

)

=
Γ(1 + 2bPJ )Γ(1 + 2bPI − α)

Γ(1 + 2bPI + 2bPJ − α)Γ(α)

d(PJ | σJ , τ ± iπ)

d(PJ − b
2 | σJ , τ)

d

(

PI , P, PJ − b

2
| σI , σJ , τ

)

(A.1)

with α = 1
2 + b(PI + PJ + P ).

Taking the difference of shifts with plus and minus sign and using (2.23) we recover

the relation of [8],

sin π∂τ

sinh b2τ
d(PI , P, PJ | σI , σJ , τ) = C d(PI − b/2, P, PJ − b/2 | σI , σJ , τ) (A.2)

where C is some constant depending only on the Liouville momenta.

In [29] the momenta conservation α = 0 was taken into account in order to sim-

plify (A.1). Simplifications with more general momenta conservations are discussed in [28].

Here we need only to investigate the case 1 + 2bPI + 2bPJ − α = 0, i.e.

P =
1

2b
+ PI + PJ . (A.3)
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The zero arising from the gamma function in the r.h.s. of (A.1) cancels with the pole of

the boundary 3-points function,

d

(

PI , P, PJ − b

2
| σI , σJ , τ

)

∼ cst
d(PJ − b

2 | σJ , τ)d(PI | σI , τ)
1
2b + PI + PJ − P

(A.4)

where the constant is independent of τ . The equation (A.1) simplifies into

2PJd

(

PI , PI + PJ , PJ +
b

2
| σI , σJ , τ

)

+ 2PId

(

PI +
b

2
, P, PJ | σI , σJ , τ ± iπ

)

= C′ d(PJ | σJ , τ ± iπ)d(PI | σI , τ).

(A.5)

Taking the difference of both +iπ and −iπ shifts of the boundary parameter τ , after

a convenient change of variable we end up with

sinhπ∂τ

sinh b2τ
d
(

PI , PI + PJ +
e0

2
, PJ | σI , σJ , τ

)

= C′′d

(

PJ − b

2
| σJ , τ

)

d

(

PI −
b

2
| σI , τ

)

(A.6)

where C′′ is independent of the boundary parameters and e0 = 1
b −b. A similar formula can

be obtained for the boundary 3-point function d(PI , P, PJ , σI , σJ , τ) with a momentum

P = PI + PJ +
e0

2
+

j

b
, j ∈ Z+ (A.7)

between the two JS boundaries.

B Properties of the star product

B.1 Main properties

In this section we investigate some useful properties of the star product ∗ previously

introduced in [19] to describe the Laplace transformed convolution. Let us first recall

its definition,

(A ∗ B) (x) =

∮

[a,b]

dx′

2iπ

A(x′) − A(x)

x − x′
B(−x′) (B.1)

where the contour circles the support [a, b] ⊂ R
− of the eigenvalue density.

We will apply this star product to a restricted set of functions with a single branch

cut on the set [a, b], no poles in C \ [a, b] and a constant behavior A(x) ∼ a0 + O(1/x) at

infinity. This product is bilinear but not symmetric, e.g. the action of any polynome P (x)

on the right leads to a vanishing result P ∗ A = 0 whereas the action on the left extract

the behavior of A at infinity, for instance:

(A ∗ 1) (x) = A(x) − a0. (B.2)

Deforming the contour of integration on the sphere, the integral (B.1) gives two con-

tributions corresponding to the singularity at infinity and the branch cut of B(−x) located

on R
+. This trick allows us to establish the important relation

(A ∗ B) (x) + (B ∗ A) (−x) = A(x)B(−x) − a0b0. (B.3)
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The star product has the following discontinuity crossing the branch cut [a, b],

Disc (A ∗ B) (x) = B(−x)Disc A(x) (B.4)

where we denoted

Disc A = A(x + i0) − A(x − i0). (B.5)

It is sometimes convenient to replace the contour integral by a usual integral over the

branch cut,

(A ∗ B) (x) =

∫ b

a

dx′

2iπ

B(−x′)

x′ − x
Discx′ A. (B.6)

We can use this description to prove a few basic properties. If two functions A1 and A2

have the same discrepancy crossing the branch cut then A1 ∗B = A2 ∗B. Similarly, if two

functions B1 and B2 take the same values on the symmetric support [−b,−a] ⊂ R
+ then

A ∗ B1 = A ∗ B2.

B.2 The star product in the critical limit

Let us consider two correlators D0(x), D1(x) in the continuum limit,

ǫαidi(ξ) = Di(x) − D∗
i (x) (B.7)

where x = ǫξ and D∗
i stands for the non-critical part of Di. In the continuum limit,

correlators have a branch cut along the interval ] −∞, 0]. The star product of D0 and D1

can be written as the sum of a term of order ǫα0+α1 corresponding to the star product of

d0 and d1 plus some higher order terms involving the non-critical part and the behavior of

the correlators at infinity:

ǫα0+α1 (d0 ∗ d1) (ξ) = (D0 ∗ D1) (x) − (D0 ∗ D1)
∗ (x). (B.8)

The star product of the critical part being given by

(d0 ∗ d1) (ξ) =

∮

]−∞,0]

dξ′

2iπ

d0(ξ
′) − d0(ξ)

ξ − ξ′
d1(−ξ′). (B.9)

At the critical point where only the ξ boundary cosmological constant remains, critical

parts of the correlators simply become di(ξ) = diξ
αi and we can easily compute their star

product. Indeed, transforming the contour integral using B.6 we get

(d0 ∗ d1) (ξ) = −d0d1

π
sin πα0

∫ ∞

0

ξ′α0+α1

ξ + ξ′
dξ′ (B.10)

since Disc ξα = 2i sin πα (−ξ)α. The last integral depends only on the sum α0 + α1 and

can be computed using the identity

1

x + a
=

∫ ∞

0
dle−lxe−la. (B.11)

We write
∫ ∞

0

ξ′α0+α1

ξ + ξ′
dξ′ =

∫ ∞

0
dξ′
∫ ∞

0
dl ξ′α0+α1e−lξe−lξ′ (B.12)
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and perform the change of variable ξ′ → t = ξ′l. It leads to the appearance of a

gamma function,

∫ ∞

0

ξ′α0+α1

ξ + ξ′
dξ′ = Γ(1 + α0 + α1)

∫ ∞

0
dl l−1−α0−α1e−lξ. (B.13)

A second change of variable l → lξ finally gives

∫ ∞

0

ξ′α0+α1

ξ + ξ′
dξ′ = Γ(1 + α0 + α1)Γ(−α0 − α1)ξ

α0+α1 (B.14)

Using the identity

Γ(1 − x)Γ(x) =
π

sin πx
, (B.15)

we end up with

(d0 ∗ d1) (ξ) =
sin πα0

sin π(α0 + α1)
d0d1ξ

α0+α1 . (B.16)

Note that this quantity satisfies the relation

(d0 ∗ d1) (ξ) + (d1 ∗ d0) (−ξ) = d0(ξ)d1(−ξ). (B.17)

C Special cases

In this appendix we consider several cases for which the loop equation simplify. We are then

able to compute their solution in the continuum limit. The values found for the critical

exponents are necessary to determine the correct dimension of boundary operators in the

general situation.

C.1 I ∩ J = ∅, kIJ = 0

When kIJ = 0, the loop equation of D
(0⊥)
IJ is self consistent and we do not need to consider

D
(1‖)
IJ anymore,

0 = D
(0⊥)
IJ ∗ d

(1‖)
J + D

(0⊥)
I . (C.1)

In the continuum limit we deduce the gravitational scaling

γ
(0⊥)
IJ = γ

(0⊥)
I − γ

(1‖)
J = γ

(0⊥)
J − γ

(1‖)
I (C.2)

for the operator inserted between both JS boundaries. The equation kIJ(rIJ) = 0 has

for solutions

rIJ = ±(1 + rI + rJ) +
2j

θ
, j ∈ Z. (C.3)

If we impose the condition rIJ ∈ [1, 1+2/θ], we get rIJ = 1+rI+rJ and γ
(0⊥)
IJ = rIJ

θ
2b2

− 1
2b2

,

the dimension of the corresponding JS-JS boundary operator is δrIJ ,rIJ
.
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C.2 I = J, kI = kJ = kIJ

When I = J correlators simplify into

D
(0⊥)
IJ (x, yI , yJ) =

D
(0⊥)
I (x, yJ) − D

(0⊥)
I (x, yI)

yI − yJ

D
(1‖)
IJ (x, yI , yJ) =

D
(1‖)
I (x, yJ) − D

(1‖)
I (x, yI)

yI − yJ

(C.4)

and in the continuum limit,

d
(0⊥)
IJ (ξ, ζI , ζJ) =

d
(0⊥)
I (ξ, ζJ ) − d

(0⊥)
I (ξ, ζI)

ζI − ζJ

d
(1‖)
IJ (ξ, ζI , ζJ) = kI

d
(1‖)
I (ξ, ζJ) − d

(1‖)
I (ξ, ζI)

ζI − ζJ

(C.5)

where the non-critical parts were found to be D
(0 ⊥)∗
IJ (x, yI , yJ) = 0 and D

(1 ‖)∗
IJ (x, yI , yJ) =

−1. We easily read the scaling dimensions γ
(0⊥)
IJ = γ

(0⊥)
I − 1

2 and γ
(1‖)
IJ = γ

(1‖)
I − 1

2 . The

boundary operator introduced between the two JS boundaries must be the identity operator

δ1,1. If we choose the value rIJ = 1 ∈ [1, 1 + 2/θ] for the solution of kIJ(rIJ) = kI = kJ ,

the dimension of the JS-JS boundary operators writes δrIJ ,rIJ
.7 Note also the relation

D
(0‖)
IJ (x, yI , yJ) =

D
(0‖)
I (x, yJ) − D

(0‖)
I (x, yI)

yI − yJ
(C.6)

compatible with the equation (3.19).

C.3 J ⊂ I, kIJ = kJ

When I ∩J = J (or kIJ = kJ) the star product can be eliminated using the property (B.3)

applied to the sum of the two equations (3.10) at points respectively x and −x. We obtain

1 + d
(0⊥)
I (x)

(

1 + D
(1‖)
IJ (−x)

)

+ kJD
(0⊥)
IJ (x)d

(1‖)
J (−x) = 0. (C.7)

In the limit kI → kJ we retrieve the previous section case. A study of the loop equa-

tion (C.7) in this limit leads us to define the same non-critical part for D
(0⊥)
IJ and D

(1‖)
IJ as

before. Then, the continuum limit of (C.7) reads

1 + d
(0⊥)
I (ξ)d

(1‖)
IJ (−ξ) + kJd

(0⊥)
IJ (ξ)d

(1‖)
J (−ξ) = 0. (C.8)

It follows γ
(0⊥)
IJ = −γ

(1‖)
J and the JS-JS boundary operator has dimension δ1+rJ−rI ,1+rJ−rI

.

The equation kIJ(rIJ) = kJ as for solutions

rIJ = ±(1 + rJ − rI) +
2j

θ
, j ∈ Z. (C.9)

Restricting to rIJ ∈ [1, 1 + 2/θ] and taking into account that the set J is included in I, i.e.

rI < rJ , the only solution is rIJ = 1 + rJ − rI , in agreement with the formula δrIJ ,rIJ
for

the dimension of the JS-JS boundary operator.

7There are actually three solutions of kIJ (rIJ) = kI = kJ belonging to [1, 1 + 2/θ], namely r = 1 and

r = ±1 + 2/θ. The choice of r = 1 is motivated by the study of the general case kIJ = kI 6= kJ .
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